

Sr optical lattice

 δ = -120 kHz

JILA, NIST and University of Colorado $\delta = -180$

http://jilawww.colorado.edu/YeLabs

Michigan Quantum Summer School Ann Arbor, June 16, 2008

Alkaline Earth versus Alkali

Alkali

Alkaline Earth

All-Optical Cooling to Ultra-Low Temperatures

Polarization Gradient Stimulated Raman VSCPT Limited to Low Densities

High Density Intercombination line sub-recoil Sideband Cooling in Dipole Traps Low Transfer Efficiency

Cold / Ultra-Cold Collisions

BEC / FDG

High Collision Rates Feshbach Resonances Hyperfine structure

Quantitative Studies

Low Collision Rates

Ground-State Magnetic Traps Tunable Interactions Only two Fermions: ⁴⁰K, ⁶Li Diversity of Bose, Fermi Isotopes Optical Feshbach resonance Structure Free Ground State

Time / Frequency Metrology

Microwave Clocks Small Optical Line Q High Optical Line Q Second-Stage Cooling Required

Strontium: Pre-cooling

- large dipole moment
- mostly closed transition
- J=0 to J=1
- diode laser
 with frequency
 doubling

Strontium: Narrow Line Laser Cooling

5s6s 5s6s 5s5p smaller dipole 5s4d moment 5s4d closed transition • J=0 to J=1 5s5p diode laser accessible 5s² $^{3}P_{J}$ ¹S ${}^{1}D_{2}$ $|{}^{3}S_{1}$

Strontium: Clock Transition

Quantum Simulations with Alkaline Earth

New Features:

- Metastable optical states
- Clock transition spectral resolution
- Nuclear spin decouples from the electronic state

Implementation:

- Nuclear spin states for quantum information storage
- Electronic state for:
 - Creation of state-dependent lattices
 - Access to control and readout
- Many ideas originally invented for Alkali atoms freed from technical problems
- New possibilites

State-dependent lattices

Dressed Potentials:

- Resonant coupling on clock transition
- Use a standing wave (oscillating Rabi frequency)
- AC-Stark split states:

$$(O) O (O) O) ^{1}S_{0} + ^{3}P_{0}$$

Spin-dependent lattices:

- Differential Zeeman shift
- Frequency-addressed resonant coupling
- Separately controllable lattices for two nuclear spins

Andrew Daley and Peter Zoller

Optical atomic clocks

Control of matter

Long - term quantum coherence:

Clean separation between internal & external degrees of freedom

Both in well defined quantum states

Cool Alkaline Earth - Strontium JILA, SYRTE, Tokyo, LENS, PTB, NPL, NRC, NIM $T \sim 0.5$ photon recoil $\sim 220 \text{ nK}$ How many cycles are there in the ${}^{3}P_{0}$ lifetime? $(4.3 \times 10^{14} \text{ Hz}) \times (150 \text{ s}) = 6.5 \times 10^{16}$ or, in fractional terms: 1.5 x 10⁻¹⁷ δ = -800 kHz ${}^{1}P_{1}$ g $^{3}\mathbf{P}_{1}$ 689 nm 461nm δ = -1800 kHz $^{3}P_{0}$ (7.4 kHz) (32 MHz) 698 nm $\Delta v \sim 1 \text{ mHz}$ ¹S₀ δ = -2800 kHz 5.6 mm

Quantum metrology in optical lattice

- Atomic confinement $<< \lambda$ ($e^{ikx} \sim 1$, $k = 2\pi/\lambda_{probe}$)
- Trap potential identical for ¹S₀ and ³P₀

Ye, Kimble, Katori, Science (June 27, 2008).

- N quantum absorbers improve precision by $N^{1/2}$
- No ac Stark shift from the trap; Collision shift minimized
- Long observation time; Zero Doppler shift, Zero recoil shift

Crossing of polarizabilities

Ye, Kimble, & Katori, Science, June 27, 2008.

It's a mess if $J \neq 0$

Important Regimes for Spectroscopy

 $\omega_{trap} >> \Gamma$ well-resolved sideband

Lamb-Dicke

uniform confinement

Spectroscopy at the magic wavelength Ludlow et al., Phys. Rev. Lett. 96, 033003 (2006).

Zoom into the carrier of 87 Sr ${}^{1}S_0 - {}^{3}P_0$

Differential g-factor & Tensor polarizability

- ${}^{3}P_{0}g$ -factor different from ${}^{1}S_{0}$ due to hyperfine
- m_F dependent vector & tensor AC shifts from the lattice trap
- All can be determined with high-resolution measurement

Optical Measurement of Nuclear g-factor

Boyd, Zelevinsky, Ludlow, Foreman, Blatt, Ido, & Ye, Science 314, 1430 (2006).

Scalar, vector, tensor polarizabilities

Boyd et al., Phys. Rev. A 76, 022510 (2007).

 $-(\Delta \alpha^{S} - \Delta \alpha^{T} F(F+1)) I_{trap}$

 $-\Delta g m_F \mu_0 B$

 \mathcal{V}_0

 ${\cal V}_{\pi_{mF}}$

Hyperpolarizability ~ (I_{trap})² : <1E-17 P. Lemonde, SYRTE

 $\Delta \alpha$: differential polarizability

ξ: polarization ellipticity

Clock frequency

1st order Zeeman

Scalar + Tensor polarizability

 $-(\Delta \alpha^{V} \xi m_{F} + \Delta \alpha^{T} 3m_{F}^{2}) I_{trap} \overset{\text{Vector +Tensor}}{\underset{\text{polarizability}}{\text{vector +Tensor}}}$

<u>Coherent</u> spectroscopy $Q \sim 2.5 \times 10^{14}$

Boyd, Zelevinsky, Ludlow, Foreman, Blatt, Ido, Ye, Science <u>314</u>, 1430 (2006). Boyd, Ludlow, Blatt, Foreman, Ido, Zelevinsky, Ye, PRL <u>98</u>, 083002 (2007).

- Instability ~ 2 x $10^{-15}/\sqrt{\tau}$
- Inaccuracy ~ 1×10^{-16}

Optical manipulation of nuclear spins

- Optically addressed, long coherence time
- Nuclear spin entanglement via electronic dipolar interactions
- Control electronic interaction via nuclear spins
- Cooling of atoms without nuclear spin decoherence (Deutsch)
- Individually addressable via a magnetic gradient field

Clock operation - Atom Lock & Normalization

Normalization

Reduction of atom number fluctuations

Lock to Atoms

Signal integration from both spinpolarized peaks

Clock comparison: Sr lattice / Cs-fountain

Absolute freq. measurement: ±0.4 Hz (8.5x10⁻¹⁶) (limited by Cs/H-maser) Need better clocks

Constraints on possible time-dependent variations of fundamental constants

Sr frequency drift < 4.6 x 10⁻¹⁶/year

Hg+ - Cs: T. Fortier *et al.*, Phys. Rev. Lett. <u>98</u>, 070801 (2007). Yb⁺ - Cs: E. Peik *et al.*, Phys. Rev. Lett. <u>93</u>, 170801 (2004). H - Cs: M. Fischer *et al.*, Phys. Rev. Lett. <u>92</u>, 230802 (2004).

Ultracold molecules: Test fundamental principles

Strontium optical Feshbach resonance

- Narrow line
- Structureless ground state in ⁸⁸Sr

Near threshold Photoassociation

Zelevinsky et al., PRL <u>96</u>, 203201 (2006).

10⁻⁵ agreement between experiment and theory

Ultracold Sr₂ Molecules in Lattice

- Ground and excited state potentials similar favorable decay to electronic ground state
- Structureless ground state

Raman transition for ground state production

Molecular Clock - Sensitivity to Mass Ratio

Zelevinsky, Kotochigova, Ye, Phys. Rev. Lett. <u>100</u>, 043201 (2008).

- Molecular potentials depend on electron mass, m_e
- Kinetic energy depends on proton mass, m_p
- Vibrational spacings depend on m_p / m_e

Optical clock comparison - Sr vs. Ca

Ludlow et al. (JILA);

Fortier et al. (NIST)

Optical clock comparison – Sr vs. Ca

Magic wavelength trap

³P₀

^{*} Caltech: Ye, Vernooy, Kimble, PRL <u>83</u>, 4987 (1999).

Tokyo: Katori *et al.*, JPSJ <u>68</u>, 2429 (1999).

Ye, Kimble, & Katori, Science, June 27, 2008.

Atomic Systematics

A. Ludlow et al., Science 319, 1805 (2008).

Contributor	Correction (10 ⁻¹⁶)	Uncertainty (10 ⁻¹⁶)
Lattice Stark (scalar/tensor)	-6.5	0.5
Hyperpolarizability (lattice)	-0.2	0.2
BBR Stark	52.1	1.0
ac Stark (probe)	0.2	0.1
First-order Zeeman	0.2	0.2
Second-order Zeeman	0.2	0.02
Density	8.9	0.8
Line pulling	0	0.2
Servo error	0	0.5
Second-order Doppler	0	<<0.01
Systematic total	54.9	1.5

Reading out atomic interactions via clock shifts

A. Ludlow et al., Science 319, 1805 (2008)

Decoherence inhomogeneity inside lattice

G. K. Campbell et al.

Blackbody Radiation Shift

current uncertainty: 1x10⁻¹⁶

$$\delta E \approx -\frac{2}{15} (\alpha \pi)^3 T^4 \alpha_d(0) [1+\eta]$$

Static Polarizability Measurements

- DC Electric Field
- Dynamic Polarizability
- Long λ Stark measurement
- BBR controlled measurement

Accurate atomic clocks Ludlow *et al.*, Science <u>319</u>, 1805 (2008). Rosenband *et al.*, Science <u>319</u>, 1808 (2008).

What is the noise? Quantum projection measurement Wineland et al., 1993; Polzik et al., 1998; Jessen et al., 2006

Spin squeezing via measurement of lattice - in collaboration with D. Meiser & M. Holland

Special thanks

Ultracold Sr

M. Boyd A. Ludlow S. Blatt G. Campbell M. Martin

T. Zelevinsky (Columbia)T. Zanon (Univ. Paris 13)T. Ido (Tokyo)T. Loftus (U. Washington)J. Thomsen (Copenhagen)

M. Holland, C. Greene (JILA)

J. Bergquist, S. Diddams, T. Fortier, C. Oates, T. Parker, S. Jefferts (NIST) P. Julienne (NIST), S. Porsev (Petersburg), E. Arimondo (Pisa), P. Zoller